EXERCISE SHEET

1) Show that

$$
\operatorname{Li}_{k}(z)=\int_{0}^{z} \operatorname{Li}_{k-1}(z) \frac{d z}{z}
$$

for $\left\{z \in \mathbb{C}||z| \leq 1\}\right.$ and $k \geq 2$. Deduce that $\operatorname{Li}_{k}(z)$ can be analytically continued to a multi-valued function on $\mathbb{C} \backslash\{0,1\}$.
2) Let

$$
D: \mathbb{C} \backslash\{0,1\} \rightarrow \mathbb{R}, \quad z \mapsto \operatorname{Im}\left(\operatorname{Li}_{2}(z)\right)+\arg (1-z) \log |z|
$$

be the Bloch-Wigner function.
(a) Show that $D(\bar{z})=-D(z)$ (in particular, D vanishes on \mathbb{R}).
(b) Show that $D(1-z)+D(z)=0$.
3) Let $F=\mathbb{Q}(\sqrt{-a})$ be an imaginary quadratic field. Let d be the discriminant and let $\zeta_{F}(s)$ be the Dedekind zeta function of F. Show that $\zeta_{F}(2)$ can be written as

$$
\zeta_{F}(2)=\frac{\pi^{2}}{6 \sqrt{|d|}} \sum_{n=1}^{|d|-1}\left(\frac{d}{n}\right) D\left(e^{2 \pi i n /|d|}\right)
$$

where $\left(\frac{d}{n}\right)$ is a periodic function of period $|d|$ taking values in $\{-1,0,1\}$ (for those who know: it is a Dirichlet character on $\left.(\mathbb{Z} /|d| \mathbb{Z})^{*}\right)$.
4) a) Compute $\zeta_{\mathbb{Q}(i)}(2)$.
b) Compute $\zeta_{\mathbb{Q}(\sqrt{-7})}(2)$.
5) Show that

$$
\xi:=2\left[\frac{1+\sqrt{-7}}{2}\right]+\left[\frac{-1+\sqrt{-7}}{4}\right] \in \mathcal{B}(\mathbb{Q}(\sqrt{-7}) .
$$

